

2024/1681

COMMISSION DELEGATED REGULATION (EU) 2024/1681

of 6 March 2024

supplementing Regulation (EU) No 305/2011 of the European Parliament and of the Council by establishing classes of performance in relation to the resistance to fire of construction products

(Text with EEA relevance)

THE EUROPEAN COMMISSION,

Having regard to the Treaty on the Functioning of the European Union,

Having regard to Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC (¹), and in particular Article 27(1) thereof,

Whereas:

- (1) Commission Decision 2000/367/EC ⁽²⁾ establishes a system for classifying the performance of construction products with regard to their resistance to fire. That system is based on a harmonised solution for assessing that performance and for classifying the results of those assessments.
- (2) Decision 2000/367/EC does not cover certain classes of performance and thus limits the possibility to declare a more detailed performance. It is therefore necessary to establish classes of performance that are up-to-date to the latest technological and market developments.
- (3) New classifications for non-loadbearing elements or products with a fire-separating function applicable to unloaded roofs, non-mechanical fire barriers for ventilation ductwork, penetration seals, combined penetration seals, linear joint seals and air transfer grilles should be added.
- (4) The obsolete classification R for load-bearing elements with a fire-separating function applicable to floors and roofs should be removed as it is effectively covered with the table related to load-bearing elements without a fire-separating function.
- (5) The technical progress in the assessment methods also requires more detailed explanations and points of reference as regards the products, including revised information in notes.
- (6) In order to enable manufacturers to declare sufficiently detailed classes of performance of construction products with regard to their resistance to fire in line with the latest technological and market developments, and in the interest of legal clarity, Decision 2000/367/EC should be repealed.
- (7) In accordance with Article 27 of Regulation (EU) No 305/2011, classes of performance in relation to the essential characteristics of construction products need to be established by the Commission. In accordance with Article 27(2) of that Regulation, those classes are to be used in harmonised standards,

^{(&}lt;sup>1</sup>) OJ L 79, 16.3.2006, p. 27.

⁽²⁾ Commission Decision of 3 May 2000 implementing Council Directive 89/106/EEC as regards the classification of the resistance to fire performance of construction products, construction works and parts thereof (OJ L 133, 6.6.2000, p. 26).

HAS ADOPTED THIS REGULATION:

Article 1

Classes of performance in relation to the resistance to fire of construction products, as set out in the Annex, are established.

Article 2

Decision 2000/367/EC is repealed.

References to Decision 2000/367/EC shall be construed as references to this Regulation.

Article 3

This Regulation shall enter into force on the twentieth day following that of its publication in the Official Journal of the European Union.

This Regulation shall be binding in its entirety and directly applicable in all Member States.

Done at Brussels, 6 March 2024.

For the Commission The President Ursula VON DER LEYEN

ANNEX

A. SYMBOLS

For the purposes of this Annex the following symbols apply:

R	Load-bearing capacity									
E	Integrity									
Ι	Insulation									
W	Radiation									
М	Mechanical action									
С	Self-closing									
C0-5	Durability of self-closing:	Durability of self-closing:								
	Use category (C)	Number of cycles								
	5	≥ 200 000								
	4	≥ 100 000								
	3	≥ 50 000								
	2	≥ 10 000								
	1	≥ 500								
	0	≥ 1								
S	Smoke leakage (in context of ventilation	n systems)/Smoke control (in context of doors)								
Р	Continuity of power and signal supply	under the standard time temperature curve								
РН	Continuity of power and signal supply	under constant temperature								
G/O	Soot fire resistance									
K	Fire protection ability									
Т	Temperature class expressed in maximu ture)	im gas temperature in °C (operating tempera-								
D	Stability duration under constant tempe	erature								
DH	Stability duration under the standard ti	me-temperature curve								
F	Functionality of powered smoke and he	eat ventilators								
В	Functionality of natural smoke and hea	Functionality of natural smoke and heat ventilators								

B. CLASSES OF PERFORMANCE IN RELATION TO THE RESISTANCE TO FIRE OF CONSTRUCTION PRODUCTS

General

The relevant definitions, tests and performance criteria are fully described or referenced in the European resistance to fire classification standards, harmonised European product standards, European testing standards, and relevant parts of Eurocodes.

If for asymmetrical elements the declared class of the element is only valid from one side, the class shall be accompanied by this information.

The following classes of performance are expressed in minutes unless otherwise specified.

1. Load-bearing elements without a fire-separating function

Table	1
-------	---

Applies to	Walls, floors, raised floors, roofs, beams, columns, balconies, walkways, stairs										
R	15	20	30	45	60	90	120	180	240	360	

2. Load-bearing elements with a fire-separating function

Applies to	Walls											
RE	15	20	30	45	60	90	120	180	240	360		
REI	15	20	30	45	60	90	120	180	240	360		
REI-M	15	20	30	45	60	90	120	180	240	360		
REW	15	20	30	45	60	90	120	180	240	360		

Table 2.1

Table 2.2

Applies to		Floors, roofs, roof windows, rooflights and shutters											
RE		15	20	30	45	60	90	120	180	240	360		
REI		15	20	30	45	60	90	120	180	240	360		
С	duct wa Option	as not ma ally, for c	anually cl lurability	osed for of self-c	the purp	ose of the	e test. ification	may be c	ompleme		nt or pro- the digits		

Table 2.3

Applies to		Raised floors											
RE		15 20 30 45 60 90 120 180 240 360											
REI		15	20	30	45	60	90	120	180	240	360		
Notes	nation its pres Raised	letter 'r' r ence refe floors sa	efers to s rs to the tisfying t	tandard constant he standa	temperat tempera ard tempe	pending ure/time ture attac erature/tin ditions fe	curve exj k of 500 me curve	posure (f °C (redu e exposur	ull fire re ced expo e for a gi	sistance) sure). ven time	whereas		

3. Products and systems for protecting load-bearing elements

Applies to	Ceilings with no independent fire resistance
	contribution to the fire resistance of structural members: Expressed in terms of classification of ement being protected.
Notes	If satisfying the criteria with regard to the 'semi-natural' fire, the symbol 'sn' is added to the clas- sification.

Table 3.2

Applies to	Fire protective coatings (reactive), boards (slabs and mats), renderings (sprays), claddings and screen								
	contribution to the fire resistance of structural members: Expressed in terms of classification of ement being protected.								
Notes	For coatings, if satisfying the criteria with regard to the 'slow heating' curve, the symbol 'IncSlow' is added to the classification.								

4. Non-loadbearing elements or products with a fire-separating function

Table 4.1

Applies to	Partitions (including partitions incorporating uninsulated portions) and fixed windows											
E	15	20	30	45	60	90	120	180	240	360		
EI	15	20	30	45	60	90	120	180	240	360		
EI-M	15	20	30	45	60	90	120	180	240	360		
EW	15	20	30	45	60	90	120	180	240	360		

Table 4.2

Applies to	Unloaded roofs											
E	15	20	30	45	60	90	120	180	240	360		
EI	15	20	30	45	60	90	120	180	240	360		
EW	15	20	30	45	60	90	120	180	240	360		

Table 4.3

Applies to	Cavity barriers										
E	15	20	30	45	60	90	120	180	240	360	
EI	15	20	30	45	60	90	120	180	240	360	
Notes	The classification is completed by a separate indication, if satisfying the sudden exposure test for cavity barriers.										

Table 4.4

Applies to	Ceilings with independent fire resistance										
EI		15 20 30 45 60 90 120 180 240 360									
Notes	The cla from al	The classification is completed by indicating how the element has been tested, and refers to a fire from above ' $(a \rightarrow b)$ ' or from below ' $(b \rightarrow a)$ ' or both ' $(a \leftrightarrow b)$ '.									

Table 4.5

Applies to		Facades (curtain walls) and external walls (including glazed elements)												
E		15	20	30	45	60	90	120	180	240	360			
EI		15	20	30	45	60	90	120	180	240	360			
EW		15	20	30	45	60	90	120	180	240	360			
Notes	been te both si	ested and des respe	fulfils the ctively.	e require	ments fro	om the in	side only	7; from th	ie outside	e only; or	ment has from ternal fire			

Table 4.6

Applies to		Non-mechanical fire barriers for ventilation ductwork												
E		15	20	30	45	60	90	120	180	240	360			
EI		15 20 30 45 60 90 120 180 240 addition to meeting the requirements related to integrity (E), the non-mechanical fire ba												
Notes	shall als (a) be (b) ach are There is mance.	so: tested fro nieve 360 ea during s no S cla	om both 0 m³/(m²l the fire t assificatio	sides, and n) maxim test. on for thi	d um leaka s produc		vith refere s no amb	ence to no	ominal di perature	uct cross- smoke pe	sectional erfor-			

Table 4.7

Applies to		Penetration seals												
E		15	20	30	45	60	90	120	180	240	360			
EI		15	20	30	45	60	90	120	180	240	360			
Notes	separati The clas 'C/C' de	ing funct ssificatio pending	ion being n of pipe on the te	g penetra	ted. ion seals e end con	is compl	eted by t	he additi	on of 'U/	U', 'C/U',	with fire- 'U/C', or e furnace			

Applies to		Combined penetration seals												
E		15												
EI		15	20	30	45	60	90	120	180	240	360			
Notes	separat The cla	ing funct ssificatio	ion being	g penetra e comple	ted.				ting cons		with fire-			

Table 4.8

Table 4.9

Applies to		Linear joint seals											
E		15	20	30	45	60	90	120	180	240	360		
EI		15	20	30	45	60	90	120	180	240	360		
Notes	- 'H' (H. Ve - 'M an - 'X' %) - 'W	, or 'V', c orizontal rtical sup ', or 'F', c d field res ; or 'Mxx respectiv ' w1 to w	or 'T' indi support porting o or 'B' indi spectively x' indicat rely), incl 2' indica	cating th ing const construct cating th r), ing the n uding the ting the j	ruction; tion – ho ne type o novemen e subscrip	assificatic Vertical s rizontal j f splices t capabili ot 'lat' or ' h range (on is valie supportir oint resp (Manufac ity (No m shear' ind (in mm) f	d for the ng constr ectively), ctured; Fi novement dicating t	uction – v eld; or B ; or Mov he induce the class	vertical jo oth manu ement ind ed moven	ientation bint; lfactured duced (in nent, and criterion		

Table 4.10

Applies to	Fire resi	ire resisting doorsets, openable windows (in walls and roofs), openable rooflights and shutters (including those that incorporate glazing, closing devices and other building hardware)												
E		15	20	30	45	60	90	120	180	240	360			
EI		15	20	30	45	60	90	120	180	240	360			
EW		15 20 30 45 60 90 120 180 240 360												
S ₂₀₀		For elements and products having passed smoke control criteria depending on test conditions fulfilled.												
S_{a3} or S_{a4}	For eler fulfilled		d produc	cts having	g passed s	smoke co	ontrol cri	teria depe	ending or	1 test con	ditions			
C	duct wa Option	The C classification may be declared where a self-closing device is fitted and the element or pro- duct was not manually closed for the purpose of the test. Optionally, for durability of self-closing, the C classification may be complemented by the digits 0 to 5 according to the use category where cycle testing has been carried out.												

Applies to	Fire resisting doorsets, openable windows (in walls and roofs), openable rooflights and shutters (including those that incorporate glazing, closing devices and other building hardware)
Notes	The EI classification is completed by the addition of the suffix '1' or '2' to indicate which defini- tion of insulation is used. In the case the classification does not cover heating on both the closing and the opening face, this shall be made explicit in the classification. This table does not include or address products for smoke ventilation. Additional smoke control classification of large industrial doorsets is possible to a leakage limit of 50 m ³ /h.

Applies to		Closures for conveyers and track bound transportation systems												
Е		15	20	30	45	60	90	120	180	240	360			
EI		15	20	30	45	60	90	120	180	240	360			
EW		15	20	30	45	60	90	120	180	240	360			
С	duct w Optior	The C classification may be declared where a self-closing device is fitted and the element or pro duct was not manually closed for the purpose of the test. Optionally, for durability of self-closing, the C classification may be complemented by the digits 0 to 5 according to the use category where cycle testing has been carried out.												
Notes	tion of specim system Sustair	classifica insulatio ien is a pi i. ied opera system is	on is used ipe or du itional ca	. An EI cl ct config pability c	lassificati uration w of any cle	on shall l vith no as	be genera sessmen	ated for the c	nose case losure for	s where t r the con	he test veyor			

Table 4.11

Table 4.12

Applies to		Air transfer grilles											
E		15	20	30	45	60	90	120	180	240	360		
EI		15	20	30	45	60	90	120	180	240	360		
EW		15	20	30	45	60	90	120	180	240	360		
Notes	added t	o the cla ying the o	ssification	n.	· · ·		0 1		,		flame' is led to the		

Applies to		Service ducts and shafts											
E		15	20	30	45	60	90	120	180	240	360		
EI		15	20	30	45	60	90	120	180	240	360		
Notes	'(i→o)'	or from	he outsid	$de'(o \rightarrow i)$	element ' or both l for verti	'(i ⇔o)'. I	n additic	n, the sy			inside ho' show		

Table 4.14

Applies to		Chimneys											
	G + dis	tance in 1	mm (e.g.	G 50) or	O + dist	ance in n	1m (e.g. (O 50)					
E		15	20	30	45	60	90	120	180	240	360		
EI		15 20 30 45 60 90 120 180 240 360											
T (operating tem- perature) in °C	80	100	120	140	160	200	250	300	400	450	600		
Notes	The cla '(o→i)'	ssification or both '	n defines (i ⇔o)'.		element	has been				from the rizontal u			

Table 4.15

Applies to		Wall and ceiling coverings									
K ₁	10	15	20	30	45	60	90	120	180	240	360
K ₂	10	10 15 20 30 45 60 90 120 180 240 360								360	
Notes		fixes '1' a this clas			nich subs	trates, fire	e behavio	our criter	ia and ex	tension r	ules are

5. **Products for use in ventilation systems (excluding smoke and heat exhaust ventilation)**

Applies to		Fire resisting ventilation ducts									
E		15	20	30	45	60	90	120	180	240	360
EI		15	20	30	45	60	90	120	180	240	360
S	10 m ³ /	0 m ³ /(m ² h) maximum leakage rate with reference to the duct surface area during the fire test									

Notes	In addition to meeting the requirements related to integrity (E) the duct must also achieve $15 \text{ m}^3/(\text{m}^2\text{h})$ maximum leakage rate with reference to duct surface area during the fire test. The classification defines how the element has been tested and refers to a fire from the inside '(i \rightarrow o)' or from the outside '(o \rightarrow i)' or both '(i \leftrightarrow o)'. 've' and/or 'ho' show the product is intended to be used for vertical and/or horizontal use.
	The classification shall indicate the pressure difference used in the test.

Table 5.2

Applies to]	Fire damp	ers				
E		15	20	30	45	60	90	120	180	240	360
EI		15	20	30	45	60	90	120	180	240	360
S	(a) sm	allest siz	e at amb	ient temp					cross sec	tional ar	ea:
Notes	(a) be (b) acl are 've' and horizon 'H' indi the class 'V' indie	tested from hieve 360 ea during l/or 'ho' so ntal (e.g., cates a fin sofication cates a fin	om both) m ³ /(m ² h the fire t how the floor mo re dampe n period l e damper	sides, and n) maxim test. product punted) u er capable having a r capable	d ium leaka is intende ise. e of satisf horizont	ge rate w ed to be u ying inte al blade a ing integ	vith reference used for v grity (E), uxis or ge rity (E), o	ence to n vertical (e or integr ometry. or integrit	ominal d g., wall 1 ity and in	mounted) 1sulation	sectional and/or

6. Products to be used within electrical, power control and communication building service installations

Table 6.1

Applies to			Fire prote	ective syst	ems for ca	able syster	ns and as	sociated c	omponent	ts	
Р		15	20	30	45	60	90	120	180	240	360
Notes	The typ cable o the cable — eit 23 — eit vo — eit vo	ssificatio be of cabl r only sp les config her to all 0/400 V her to all ltage up t her to al ltage up t	es which ecific cab gurations types of (three-ph types of 0 400/69 l types o to 110 V;	can be in les; and which c power c nase AC); power ca 90 V (Th f signal- or	an be pro ables (rat bles (rate ree-phase /control	otected ar ed voltag ed voltage e AC); cables (ra	nd the op e 300/50 e 450/75	erating v 00 V) for 0 V up to	oltage, i.e an opera 0,6/1 kV	ting volt /) for an o	age up t operatin

Table	6.2
-------	-----

Applies to	τ	Inprotecte	d electric,	power co	ntrol and	commun	ication ca	bles with	intrinsic f	ìre resista	nce
P _{ca}		15	20	30	45	60	90	120	180	240	360
Notes		For power cables and control cables the classification shall indicate for which rated voltage the performance criteria are satisfied.									

Table 6.3

Applies to	Unprot	ected sma		power co mm diame					intrinsic f m²)	ìre resistai	nce (< 20
PH _{ca}		15	20	30	45	60	90	120	180	240	360
Notes		For power cables and control cables the classification shall indicate for which rated voltage the performance criteria are satisfied.									

7. Products to be used in smoke and heat control systems

Applies to		Single compartment smoke control ducts									
E ₆₀₀		15 20 30 45 60 90 120 180 240 360									
S		m³/(m²h) maximum leakage rate with reference to duct surface area at ambient temperature nd 5 m³/(m²h) maximum leakage rate related to the duct surface area during the fire test.									
Notes	(m ² h) n The cla compa: 've' and the com '500', '2	naximum ssificatio rtment us /or 'ho' s npartmen	l leakage n is comp se only. how the nt. 500' sho	rate with pleted by product i ow the pr	reference the suffi s intende oduct is i	e to duct x 'single' ed to be u intended	surface a for prod	area duri ucts inter ertical an	ng the fir nded to b	e test. e used fo zontal us	se, within

Table 7.1

Table 7.2

Applies to		Multi-compartment fire resistant smoke control ducts									
E		15	20	30	45	60	90	120	180	240	360
EI		15	20	30	45	60	90	120	180	240	360
S	5 m ³ /(r and 5 r	$m^3/(m^2h)$ maximum leakage rate with reference to duct surface area at ambient temperature nd 5 $m^3/(m^2h)$ maximum leakage rate related to the duct surface area during the fire test.									

Notes	In addition to meeting the requirements related to integrity (E) the duct must also achieve 10 m ³ / (m ² h) maximum leakage rate with reference to duct surface area during the fire test. The classification is completed by the suffix 'multi' for products intended to be used for multi-compartment use. 've' and/or 'ho' show the product is intended to be used for vertical and/or horizontal use. '500', '1 000', '1 500' show the product is intended to be used up to these values of under-pressure, measured in Pa at ambient temperature.
-------	--

Applies to		Single compartment smoke control dampers											
E ₆₀₀		15	20	30	45	60	90	120	180	240	360		
S	(a) sm	1 1											
Notes	control (a) be (b) pa (c) ac arr (1) (2) The cla ment u 'ved', 'v and/or 'H' indi the cla 'V' indi the cla 'S00', ' pressu 'AA' de applica 'C ₃₀₀ ', ' in smo tems co be used (N), res 'HOT 4 control	tion to m l damper tested from siss a main hieve 360 ea during) smalles) largest assification se. rew', 'vedw horizont icates a si ssification cates a si spectively thoo cate a and c	shall also om both ttenance) m ³ /(m ²] the fire t size at ar n is com w' and/or al use, to ngle com n period l ngle com n period l d '1 500' t ambient use with uiring m C _{MOD} ' or ' ol only sy with env vystem hav High Ope has been	b: sides, of openin a) maxim est ambient te pleted by 'hod', 'ho gether w partmen having a partmen having a 'show th t tempera a applicat anual int $C_{300}(N)'$, stems, fu ironmen ving a con	ng test, an um leaka temperatu the suffi ow', 'hod ith moun t smoke horizont t smoke vertical b at the pro- ervention 'C _{10 000} (P Illy contr tal system ntrolled o Tempera d to an a	nd age rate w ure, and re and du x 'single' w' show t nting in a control d al blade a control d blade axis oduct is in viding au n or prov V)', 'C _{MOD} olled smo ns or mo or variabl ture) indi dditional	vith referent iring the for produ- the produ- duct or se amper ca axis or ge amper ca or geom- ntended tomatic a diding aut (N)' show oke contri- dulating e positio icates tha test to d	ence to n fire test. ucts inter in a wall apable of cometry, apable of to be use activation comatic a v the pro rol system smoke con n, tested t the sing emonstra	nded for s ended to b floor or l satisfying d up to th n, 'MA' de activation duct is in ns and sn ontrol da: under loa gle compa ate that it	uct cross single cor be used for both resp g integrit nis value notes for tended to noke con mpers int d, or with artment s has the a	sectional npart- r vertical ectively. y (E) for y (E) for of under- use with obe used trol sys- rended to nout load moke		

Table 7.3

Applies to	Multi-compartment fire resistant smoke control dampers												
E		15	20	30	45	60	90	120	180	240	360		
EI		15	20	30	45	60	90	120	180	240	360		
S	(a) sm	 200 m³/(m²h) maximum leakage rate with reference to nominal duct cross sectional area: (a) smallest size at ambient temperature; (b) largest size at ambient temperature and during the fire test. 											
Notes	multi-c (a) be (b) pa (c) ac du (1) (2) The cla use. 'ved', 'v and/or 'H' indi integrif axis or 'V' indi integrif axis or 'V' indi integrif axis or 'V' indi integrif axis or 'So0', ' pressu 'AA' de applica 'C ₃₀₀ ', ' in smo tems cd be used (N), res 'HOT 4 tant sm	tion to m compartm tested fro ss a main hieve 360 yring the f smalles a largest ssification rew', 'vedw horizont icates a m ty (E), or i geometry cates a m ty (E), or i geometry 1 000' an re in Pa at enotes for ations req C _{10 000} ', 'C ke contro ombined 1 in any sy spectively 400/30' (I to be ope	nent fire : om both tenance) m ³ /(m ²) fire test size at an n is comp w' and/or al use, to ulti-com ntegrity a y, d '1 500' : ambient use with uiring m C _{MOD} ' or ' ol only sy with env zstem hav figh Ope rol damp	resistant : sides, of openir ambient : nbient te oleted by 'hod', 'ho gether w partment and insul show the temperat applicat anual into $C_{300}(N)'$, stems, fu ironment ving a con-	smoke congression smoke congression in the sufficient sufficient sufficient sufficient sufficient sufficient sufficient sufficient fire resignation (EI) at the protection (EI) at the protection sprovervention 'C _{10 000} (N contral system not controlled c	ontrol dan Id Ige with r ure, and re and du c 'multi' for w' show t nting in a stant smoo for the c stant smoo for the c stant smoo) for the c oduct is in viding au n or prov J)', 'C _{MOD} ' olled smoo or variabl ture) indi cted to an	eference ering the or produ he produ duct or bke contri classificat: oke contri classificat tomatic a iding aut (N)' show oke contri dulating e positio cates tha	to nomin fire test. cts intend ict is intend in a wall/ rol damp ion perio rol dampetion rol dampetion to be use activation contatic a v the pro- rol system smoke con n, tested at the mul-	al duct c ded for m nded to b floor or l er capabl d having er capabl od having d up to th n, 'MA' de ctivation duct is in ns and sn ontrol da: under loa demonst	ross section ulti-comp be used for both resp e of satisf a horizor e of satisf g a vertica nis value of notes for tended to noke cont mpers int d, or with trate that	onal are partme r vertic ectively ying tal blade of unde use wi be use trol sys ended nout loa ire resis it has th		

Table 7.4

Table 7.5

Applies to	Smoke barriers											
D ₆₀₀		15	20	30	45	60	90	120	180	240	360	
DH		15	20	30	45	60	90	120	180	240	360	

Applies to	Powered smoke and heat control ventilators (fans), including connectors											
F ₂₀₀		15	20	30	45	60	90	120	180	240	360	
F ₃₀₀		15	20	30	45	60	90	120	180	240	360	
F ₄₀₀		15	20	30	45	60	90	120	180	240	360	
F ₆₀₀		15	20	30	45	60	90	120	180	240	360	
F ₈₄₂		15	20	30	45	60	90	120	180	240	360	

Table 7.6

Table	7.7
-------	-----

Applies to	Natural smoke and heat exhaust ventilators										
B ₃₀₀		15	20	30	45	60	90	120	180	240	360
B ₆₀₀		15	20	30	45	60	90	120	180	240	360
B _ϑ		15	20	30	45	60	90	120	180	240	360
Notes	Where ϑ indicates the exposure condition (temperature), higher than 300 °C. These products are designed to open in case of fire and do not have an integrity (E) classification.										